Printed Pages: 4

EAS-301

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 199319

Roll No.

B. Tech.

(SEM. III) (ODD SEM.) THEORY EXAMINATION, 2014-15 MATHEMATICS - III

Time: 3 Hours]

[Total Marks: 100

Note: Attempt all questions. All questions carry equal marks.

Attempt any two parts of the following: 2×10=20

(a) State the necessary and sufficient conditions for a function f(z) of a complex variable z, to be analytic in a region. Prove that

$$\nabla^2 \left\{ |f(z)|^n \right\} = n^2 \left| f(z) \right|^{n-2} \left| f'(z) \right|^2$$

stating the restrictions on f(z).

(b) State Cauchy's theorem for an analytic function. Verify it by integrating the function f(z)=z³ + iz along the sides of the rectangle with vertices (0,0), (2,0), (2,2) and (0,2).

- (c) Evaluate the following integrals:
 - (i) $\int_0^\infty \frac{\sin x}{x} dx$
 - (ii) $\int_0^{2\pi} \frac{\cos 3\theta}{\left(5 3\cos \theta\right)^4} d\theta$
- 2 Attempt any two parts:

2×10=20

(a) Define the coefficients of skew ness and kurtosis of a distribution.

Find the coefficients of the skew ness and kurtosis of the distribution given by

$$f(x) = \begin{cases} e^{-x} \text{ for } x \ge 0\\ 0 \text{ other wise} \end{cases}$$

(b) Fit a least – square parabola having the form $y = a + bx + cx^2$ to the following data:

	1.2							
y :	4.5	5.9	7.0	7.8	7.2	6.8	4.5	2.7

(c) Define the coefficients of regression and correlation.

Compute the correlation coefficient between the heights
x of fathers and the heights y of their sons where x
and y are given in the following table:

x(in cm)	160	165	170	175	180	185	190
y(in cm)	157	163	165	168	175	181	183

3 Attempt any two parts:

2×10=20

- (a) Find the moment generating function of a random variable X that is binomially distributed.
- (b) Ten percent of the tools produced in a certain manufacturing process turn out to be defective. Find the probability that in a sample of 10 tools chosen at random, exactly 2 will be defective, by using (a) the binomial distribution (b) the Poisson approximation to binomial distribution.
- (c) In a blade manufacturing factory 1000 blades are examined daily. Draw the np- chart for the following table and examine whether the process is under control?

Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No. of	9	10	12	R	7	15	10	12	10		7		1.4	1,5	1,
defective blades		9 10	12	12 8	′	13	10	12	10	8	′	13	14	15	16

4 Attempt any two parts:

2×10=20

(a) Derive the Newton-Raphson's formula for finding the root of a function. Using this formula find a real root of the equation

$$x^3 + 2x^2 + 10x - 20 = 0$$
up to TEN iterations

(b) Find the Newton's forward interpolation polynomial for the following data:

x	1	2	3	4	5	6	7	8	9	10
f(x)	5	12	17	21	27	29	35	40	50	58

Find f(5.7).

(c) Find a Lagrange's interpolation polynomial for the following data:

x	2	5	10	14	17	25
f(x)	5	11	21	27	35	47

Find the value of f (8).

5 Attempt any two parts:

 $2 \times 10 = 20$

(a) Solve the following system of linear equations by Gauss-Seidel method

$$10x + y - z = 13$$

 $x + 10y + z = 29$

$$2x + y + 10z = 41$$

Correct up to two decimal- places

(b) Derive the formula for $\frac{3}{8}$ - Simpson's rule for the numerical integration. Using this rule,

evaluate
$$\int_0^6 \frac{e^x}{1+x} dx$$

(c) Using Runge- Kutta method of order 4, find y for x = 0.1, 0.2, 0.3 given that $\frac{dy}{dx} = (x+y)y$ and

$$y = 1$$
 at $x = 0$.